Unemployment insurance and distance to retirement: a natural experiment in France

Baguelin et Remillon

UEVE-Tepp / Ined

2013

What is done here

An empirical analysis of the influence of unemployment insurance on behaviors in the labour market for older workers

From a natural experiment first studied by Fremigacci (2010)

- Analysis of the age pattern of unemployment insurance (UI) inflow of older workers Identification of critical age thresholds...
 - based on a before\after comparison...
 - controlling for time fixed-effects
- Stimation of the causal effect of a reduction of PBD...
 - on the age (at UI admission) of older workers...
 - eligible for UI

Outlines

An empirical analysis of the influence of unemployment insurance on behaviors in the labour market for older workers

- Issue and literature
- Institutional background
 - UI rules and the 2003's reform
 - Age-related incentives associated to labour market institutions
- Oata and descriptive analysis of UI inflow's age pattern
- Econometric analysis of UI inflow's age pattern
- Stimating the effect of the reform on the age (at UI admission) of laid-off workers

Raising the employment rate of older workers (40% in 2010)

- ullet Reducing entries in early retirement programs \checkmark
- Raising contribution length to the pension system and the legal retirement age \checkmark
 - The optimistic view
 - it will "do the job"...
 - it's all a matter of *distance to retirement*!
 - The pessimistic view
 - Unless the labor demand increases...
 - older workers' unemployment will rise
- The issue of older workers' UI: Hairault (2012)

The policy issue - Quantitative age-dependent workforce management in France

- In France, UI rules are more favorable to older workers $(\geq 50 \text{ years old})...$
 - Longer PBD
 - Possible exemption from active job search
 - Possible extension of UI benefits until retirement

Any temptation to use UI as a pathway to retirement?

Figure: The example of Renault (source: Les Echos, january 28, 2013) The policy issue - Is UI used as a pathway to retirement?

Investigation of the relation between UI rules and the age of older workers at job termination date

- If UI is used as a bridge between employment and retirement For a given retirement age...
 - the shorter the PBD...
 - the older the workers at job termination date
- Otherwise no influence of PBD

Issue and literature

Literature

- Effects of UI on behaviors in the labor market: lots of papers! Recent survey: Tatsiramos and van Ours (2012)
 - Outflow effect: impact of UI on unemployment duration
 - Inflow effect: impact of UI on flows into unemployment
 - Eligibility effect
 - PBD effect
 - Lalive, van Ours and Zweimüller (2011)
- The case of older workers: UI and retirement rules Age-related incentives (PBD)
 - UI inflow's age pattern: Tuit and van Ours (2010)
 - Exit rate from employment: Winter-Ebmer (2003), Grogger and Wunsch (2012)
 - Early retirement programs interactions (UI/DI): Inderbitzin et al. (2013)

Literature - The link between PBD and older workers' inflow

Theoretical arguments

- Within the perspective of the employer
 - Incentives to dismiss older workers eligible for extended benefits to limit the risk of legal appeal
 - Firms' reputation suffers less when high-tenured laid-off workers receive generous UI compensation
- Within the perspective of the worker
 - Incentives to quit and collect benefits (unlikely for France)
 - $\bullet\,$ Lower effort as UI compensation improves $\rightarrow\,$ higher probability of being fired

- Replication within the context of the French labour market of Tuit and van Ours (2010)
- Interest:
 - $\bullet~$ Very generous UI system \rightarrow stronger incentives
 - $\bullet\,$ Dualistic labor market $\rightarrow\,$ insider/outsider story easy to check
 - Distinction between two effects:
 - Entitlement effect
 - Distance-to-retirement effect
 - Detailed interpretation according to wage, job termination motive, sociodemographic characteristics
- An original evaluation of the effect of the reform

Institutional background

UI rules and the 2003's reform

2001's agreement	Employment contracts ending between January 2001 and June 2002			
Entitlement class (age)	5 (<50)	6 (>=50)	7 (50-54)	8 (>=55)
Employment record	>=14m/24	>=14m/24 but $<27m/36$	>=27m/36	>=27m/36
PBD	30m	45m	45m	60m
July 2002's transitory rules	Employment contracts ending between July 2002 an			nd December 2002
Entitlement class (age)	5 (<50)	6' (>=50)		8' (>=55)
Employment record	>=14m/24	>=14m/24		>=27m/36
(Contrib. to pension syst.)				(>=100 quarters)
PBD	30m	4	5m	60m
2003's reform	Employme	nt contracts ending	between January 2003	and December 2005
Entitlement class (age)		В	C (>=50)	D (>=57)
Employment record	>=	>=14m/24 >=27m/36		>=27m/36
(Contrib. to pension syst.)				(>=100 quarters)
PBD		23m	36m	42m

Baguelin et Remillon (UEVE-Tepp / Ined)

UI and the distance to retirement

Critical age thresholds - Constant over the period

- Pension system: 60.0
- UI rules
 - Exemption from job search obligation (DRE)
 - $\bullet~\geq$ 160 quarters of contribution to the pension system: 55.0
 - < 160 quarters of contribution to the pension system: 57.5
 - Tax on older workers' job termination ("Contribution Delalande") (Adding up to legal severance pay)

Institutional background

Critical age thresholds - Tax on older workers' job termination (1999-2006)

Figure: Age profile of the tax on older workers' layoff

Critical age thresholds - Changing over the period

- Critical in terms of entitlement
- Critical in terms of "distance to retirement" (59.5 before \setminus 60.0 after)
 - Intermediate ER
 - Before the reform: 55.75
 - After the reform: 58.08
 - Long ER
 - Before the reform: 55.00
 - After the reform: 57.00

Institutional background

Critical age thresholds - UI before <code>\after, long ER</code>

Figure: Long ER: $ER \ge 27m/36$

Institutional background

Critical age thresholds - UI before\after, intermediate ER

Figure: Intermediate ER : $14m/24 \le ER < 27m/36$

Data and descriptive analysis of UI inflow's age pattern The baseline sample

- 1/10 (representative) sample...
 - of all UI admissions...
 - registered between Jan. 1, 2001 and Dec. 31, 2010
- Applied restrictions
 - Regular UI admissions (ARE hors annexes)...
 - registered between jan. 1, 2001 and dec. 31, 2005...
 - With a fresh entitlement

Age at the date of UI admission	N
45.00 - 49.99	37,866
50.00 - 54.99	36,876
≥ 55.00	36,707
Total	111,449

Data and descriptive analysis of UI inflow's age pattern The baseline evidence - Average annual UI inflow of workers, before\after 2003

Data and descriptive analysis of UI inflow's age pattern Employment adjustment cycle

Figure: Quarterly variations of employment (source: Insee)

The approach over the baseline sample

Tuit and van Ours (2010)

t _	45.00	52.00	59.75	
L	45.24	52.24	59.99	
2001 <i>Q</i> 1	<i>Y</i> 1,1	<i>Y</i> 1,29	<i>У</i> 1,60	
÷		·		
2002 <i>Q</i> 2	<i>Y</i> 6.1	У 6,29	У 6.60	
:	- ,	• •	- ,	
2005 <i>Q</i> 4	V20_1	V20.20	V20.60	
	520,1	<i>J</i> 20,23	520,00	111 440
				111,449

The comprehensive analysis

Specification

$$\log y_{t,\tau} = \log y_0 + \alpha_t + \beta_\tau + \delta_\tau \cdot (1 - b_t) + \varepsilon_{t,\tau}$$

The intercept log y_0 corresponds to the reference: the 2002Q2 inflow of workers aged 52.00-52.24

- α_t captures quarter fixed-effects
- β_{τ} captures age-class fixed-effects (independently from the 2003's reform)
- $\delta_{ au}$ captures the before\after the 2003's reform difference for age class au
- The model is estimated using OLS

The comprehensive analysis - Before the reform (betas), inflow

The comprehensive analysis - Before the reform (betas), inflow + mean wage

The comprehensive analysis - Before\after difference (deltas and betas), inflow

The comprehensive analysis - Before\after difference (deltas), inflow + mean wage

The comprehensive analysis - Conclusion

Econometric analysis of UI inflow's age pattern The targeted analysis

- Better suited to deal with missing values and to conduct the analysis over subsamples
- Specification (denoting log y₀ the intercept)

$$\log y_{t,\tau} = \log y_0 + \alpha_t + \gamma \cdot \tau + \sum_{age} \begin{pmatrix} (\zeta^b_{age} \cdot q_{$$

- α_t captures quarter fixed-effects / γ captures an age-trend
- ζ_{age} tests whether a "hole" occurs just below $\mathit{age},\,(b)$ before and (a) after the reform
- η_{age} tests whether a "peak" occurs just above $\mathit{age},\,(b)$ before and (a) after the reform

•
$$age \in \{50; 55; 55.75; 57; 58\}$$

		log y			
Reform	break	Januar	y 2003		
Age thr	esholds	Before	After		
50.00	2	16***	09*		
30.00	\$ 	(.06)	(.05)		
	÷	+.02	+.04		
	η	(.06)	(.05)		
55.00	2	12**	+.03		
33.00	6	(.06)	(.05)		
	ŝ	+.65***	+.29***		
	4	(.06)	(.05)		
55 75	2	+.33****	$+.17^{***}$		
33.75	6	(.06)	(.05)		
	\$	$+.22^{+++}$	+.09**		
	$\widehat{\eta}$	(.06)	(.05)		
57.00	2	03	+.02		
51.00	\$	(.06)	(.05)		
	ŝ	$+.10^{\circ}$	+.35***		
	4	(.06)	(.05)		
50.00	2	07	+.11**		
33.00	6	(.06)	(.05)		
	0	+.03	04		
	η	(.06)	(.05)		
	\$	00	35***		
	1	(.0006)			
		N =	: 800		
		$R_{adj}^{2} = .48$			
		$\log y$	= 4.50		
		$\log 20 = 4.58^{+++}$			

Econometric analysis of UI inflow's age pattern The targeted analysis - Stratification

- Two lines of stratification are considered
 - Employment record (ER): incentives
 - Job termination motive: bargaining power
- Complementary analyses
 - Two correlated variables
 - Independent restrictions to the baseline sample
- Allow complementary lines of interpretation

The targeted analysis - Stratification

		UI admissions registered					
	Befo	re	Afte	7	Fro	m	
		July 1,	2002		January 1	, 2003 on	
Employment record (ER)	Interm.	Long	Interm.	Long	Interm.	Long	Tetal
Termination motive \setminus	(6)	(7&8)	(6')	(8')	(B)	(C&D)	Total
End of a fixed-term contract	1,455	993	1,019	172	2,827	2,837	9, 303
Economic redundancy	629	3,733	1,436	920	691	6, 536	13, 945
"PAP anticipé"	3	7	490	173	335	3,714	4,722
Other layoffs	1,077	7,931	2,699	2,050	2,035	16,659	32, 451
Resignation	79	303	136	59	164	596	1,337
Other motive	547	1, 195	673	454	667	1,393	4, 929
Total	3, 790	14, 162	6,453	3,828	6,719	31,735	66,687

Age	Intermediate ER		Long ER	
thresholds	Before	After	Before	After

50.00 ĉ

 $\widehat{\eta}$

55.00	2	+.19	+.05	12°	+.03	
00.00	`	(.13)	(.09)	(.07)	(.05)	
	ŝ	+.37***	+.06	+.80***	+.24***	
	4	(.13)	(.09)	(.07)	(.05)	
55.75	2	+.11	$+.24^{***}$	+.44***	$+.12^{++}$	
00.10	οο./ο ς	(.13)	(.09)	(.07)	(.05)	
		+.14	+.07	+.28***	+.04	
	η	(.13)	(.09)	(.07)	(.05)	
57.00	2	02	+.18*	+.08	+.00	
07.00		(.13)	(.09)	(80.)	(.05)	
	9	11	+.07	+.23***	$+.42^{***}$	
	4	(.13)	(.09)	(80.)	(.05)	
58.00	2	20	$+.24^{**}$	+.01	+.11**	
35.00	5	(.13)	(.10)	(.08)	(.05)	
	a.	+.13	04	+.12	04	
	η	(.13)	(.10)	(.08)	(.05)	
	\$	04	4***	.006***		
	1	0.)	(.001)		01)	
		N = 647		N = 648		
		R_{adj}^2	$R_{adj}^2 = .68$		= .59	
		logy	= 2.57	$\overline{\log y} = 4.12$		
		log 3/0 =	4.25***	log yo =	3.89***	

Econometric analysis of UI inflow's age pattern The targeted analysis - Stratification, conclusions (1)

- Nothing consistent with PBD incentives is observable for *intermediate* ER (outsiders) at 55.75 nor at 58 No "distance-to-retirement" effect!
- Only for *long ER (insiders)*, do we observe the "hole-below\peak-above" pattern...
 - at 55 before the reform
 - at 57 after the reform
- Other incentives than just PBD seem at work at 55 and 57
 - Both groups (intermediate/long ER)
 - Both before and after the reform

Various job termination motives convey different information

- Economic redundancy (28.0%)
 - Termination due to insufficient profitability (declared)
 - Dismissed worker shall not be replaced to do the exact same job
 - Any choice on the timing?
- Other layoffs (48.5%): "personal motive" essentially
 - "Inability to hold the job" (no malpractice)
 - Most legal appeal concern this motive
- End of contract (14.0%)
 - The date of termination is determined at hiring
 - No legal risk associated to separation

Age		Eco. red	lundancy	Other	layoffs	End of contract	
thresh	olds	Before	After	Before	After	Before Afte	
50.00	2	33***	16**	+.03	+.00	31**	24**
50.00	Ś	(.10)	(80.)	(.08)	(.07)	(.13)	(.11)
	~	13	05	$+.15^{\circ}$	+.19***	+.08	16
	η	(.10)	(.08)	(.08)	(.07)	(.13)	(.11)
55.00	2	07	+.11	18**	03	08	+.09
33.00	2	(.10)	(.08)	(.08)	(.07)	(.13)	(.11)
	ŝ	$+.82^{***}$	+.51***	+.77***	$+.21^{+++}$	+.56***	+.12
	4	(.10)	(.08)	(.08)	(.07)	(.13)	(.11)
EE 75	ŝ	+.31***	+.28***	+.43***	+.14**	+.26*	+.20*
00.10	ç	(.10)	(.08)	(.08)	(.07)	(.13)	(.11)
		+.29***	+.08	+.29***	$+.12^{*}$	+.20	+.13
	η	(.10)	(.08)	(.08)	(.07)	(.13)	(.11)
57.00	ŝ	17^{*}	01	+.07	03	03	$+.21^{\circ}$
01.00		(.10)	(80.)	(.08)	(.07)	(.13)	(.11)
	-	+.09	$+.27^{***}$	$+.22^{***}$	+.46***	09	$+.28^{++}$
	1	(.10)	(80.)	(80.)	(.07)	(.13)	(.11)
58.00	2	06	10	00	+.22	19	+.15
35.00	\$	(.10)	(.08)	(.08)	(.07)	(.13)	(.11)
		10	22***	$+.15^{\circ}$	+.00	+.01	+.03
	4	(.10)	(80.)	(80.)	(.07)	(.13)	(.11)
	\$	0088***		+.01	23***	02	74***
	1	(.0010)		(.00	008)	(.00	13)
		N =	: 800	N =	800	N =	800
		R_{adj}^2	= .55	R_{adj}^2	= .50	$R_{adj}^{2} = .45$	
		$\log y$	= 3.09	$\log y$:	= 3.63	$\log y$ =	= 2.40
		log 30 =	log y0 = 3.43***		3.15***	log 3/0 =	3.05***

- The "other layoffs" motive: strong bargaining power!
 - "Hole-below\peak-above" pattern and its displacement after the reform, particularly clear
 - A bargained "early-retirement" motive?
- Economic redundancies less responsive to changes in UI rules (55 remains a critical threshold after the reform)
- Ends of contract come close to an outsider's profile
 - Responsive at 50
 - Responsive at 55 before the reform
 - Non-responsive elsewhere

1.00		Intermed	liate ER	Intermed	liate ER	Long ER		Long	ER
Age		Lay	offs	Other	notives	La	yoffa	Other 1	motives
thresh	olds	Before	After	Before	After	Before	After	Before	After
	2	08	08	+.29	+.06	10	0.02	17	.08
00.00	5	(.19)	(.13)	(.18)	(.13)	(.08)	(0.06)	(.16)	(.11)
	8	+.54***	02	+.17	00	+.83***	+0.23***	+.72***	+.26**
	η	(.19)	(.13)	(.18)	(.13)	(.08)	(0.06)	(.16)	(.11)
55 75	2	+.09	+.26*	+.12	+.20	+.45***	$+.12^{**}$	+.51***	+.17
00.10	6	(.19)	(.13)	(.18)	(.13)	(.08)	(.06)	(.16)	(.11)
		+.18	+.09	+.10	03	+.29***	+.04	+.34**	+.02
	4	(.19)	(.13)	(.18)	(.13)	(.08)	(.06)	(.16)	(.11)
57.00	2	28	+.12	+.11	+.15	+.12	03	08	+.16
01.00	5	(.19)	(.13)	(.18)	(.13)	(.08)	(.06)	(.16)	(.11)
	8	+.12	+.05	40°	07	+.26***	+.44***	+.19	+.35****
	4	(.19)	(.13)	(.18)	(.13)	(.08)	(.06)	(.16)	(.11)
52.00	2	20	+.51***	20	10	+.08	$+.12^{**}$	34***	+.03
00.00	6	(.21)	(.14)	(.18)	(.13)	(.08)	(.06)	(.16)	(.11)
		+.25	+.04	01	08	$+.17^{**}$	04	05	13
	4	(.19)	(.14)	(.18)	(.14)	(.08)	(.06)	(.16)	(.11)
	2	04	1***	04	6***	.00	8***	00	8***
	1	(.002) (.002)		02)	(.001)		(.002)		
		N = 641		N =	642	N =	= 648	N =	647
		R_{adj}^2	= .50	R^2_{adj}	= .56	R^2_{adj}	= .61	R_{adj}^2	= .23
		$\log y$ =	= 1.75	$\log y$ =	= 1.94	$\log y$	= 3.94	$\log y$ =	= 2.25
		log yo =	3.57***	log ye =	$\widehat{\log y_0} = 3.47^{***}$		= 3.62***	log yo =	2.51***

Baguelin et Remillon (UEVE-Tepp / Ined)

The targeted analysis - Stratification, conclusions (3)

- The purest distinction is between...
 - Layoff and long ER: pure insiders
 - "All other motives" and intermediate ER: pure outsiders
- Behaviors are...
 - Non-responsive to UI rules as regards pure outsiders
 - Strongly responsive to UI rules as regards pure insiders (the majority among older workers)

The approach

- We distinguish between two groups of insiders:
 - Laid-off workers aged 50 to less than 55 at the date of UI admission: far from retirement
 - Laid-off workers aged 55 or more at the date of UI admission: close to retirement
- A pseudo difference-in-difference analysis
 - Both groups were impacted by the 2003's reform...
 - but only for the second have we identified changes in behaviors

Descriptive analysis - Workers laid off far from retirement (aged 50 to less than 55)

Baguelin et Remillon (UEVE-Tepp / Ined)

UI and the distance to retirement

Descriptive analysis - Workers laid off close to retirement (aged 55 and above)

2013 39 / 44

Identifying a changing trend with a fuzzy regression discontinuity design

2SLS estimation

Main fist stage model

$$E\left[\mathbf{S}_{i} \mid t_{i}\right] = \gamma + \gamma_{0} \tilde{t}_{i} + \pi \mathbf{T}_{i} + \gamma_{1}^{*} \mathbf{T}_{i} \tilde{t}_{i}$$

- S_i : assignation (to new rules) dummy
- $\tilde{t}_i = t_i t^*$, t^* : jan.. 1, 2003
- T_i : before\after (jan. 1, 2003) dummy

•
$$\gamma_1^* = \gamma_1 - \gamma_0$$

Second stage model

$$E[\mathbf{Y}_i|t_i] = \alpha + \beta_0 \tilde{t}_i + \rho E[\mathbf{S}_i|t_i] + \beta_1^* E[\mathbf{S}_i \tilde{t}_i|t_i]$$

- $\beta_{\rm 0}$ captures the trend before the reform
- β_1^* captures the trend *after* the reform

Identifying a changing trend with a fuzzy regression discontinuity design

Jan. 1, 2001	Layoffs	Layoffs
Dec. 31, 2005	50-55	55 and over
÷	52.42***	57.25***
a	2001 Layoffs 2005 50-55 55 52.42*** 5 (0.03) -0.00024*** -0 (0.00008) (0 0.12** 0 (0.05) -0.00003 +0 (0.00004) (0 23,479 0.0004	(0.03)
6	-0.00024***	-0.00025***
0	(0.00008)	(0.00009)
~	0.12**	0.18***
ρ	(0.00008) 0.12** (0.05)	(0.06)
`@*	-0.00003	+0.00026***
<i>P</i> ₁	(0.00004)	(0.00006)
N	23, 479	27,639
R^2	0.0004	0.0056

Difference-in-difference analysis

Difference-in-difference analysis

	Jan. 1, 2001	Lavoffs
The model	Dec. 31, 2005	20,000
	â	52.53***
$\mathbf{V}_{i} = \mathbf{o}_{i} + \beta \mathbf{c}_{i} + \mathbf{o}_{i} \mathbf{p}_{i} + \mathbf{\delta} \mathbf{c}_{i} \mathbf{p}_{i} + \mathbf{c}_{i}$	(std-err)	(0.02)
$\Gamma_I = \alpha + \beta S_I + \gamma R_I + \delta S_I R_I + \epsilon_I$	β	-0.03
a d i accimment dummy	(std-err)	(0.02)
	Ŷ	4.75***
• R _i : distance to retirement	(std-err)	(0.02)
 The average effect is 	Effect $\hat{\delta}$	0.35***
	(std-err)	(0.03)
captured by δ	R^2	0.69
	Ν	51,118

- Labor management practices take UI rules into account
 - Dismissals of insiders close to retirement...
 - are postponed as a response to a reduced PBD
- Interpretation?

No effect as regards...

- insiders far from retirement: a matter of distance to retirement
- outsiders: avoiding legal challenges?
- What shall we do? A true "Filière unique"!